TREATING HEAD AND NECK CARCINOMA WITH PROTON THERAPY
CURRENT PRACTICE, OPPORTUNITIES AND CHALLENGES
FOREWORD

Since IBA first started to develop proton therapy solutions, we have focused on collaboration and sharing of information. This culture of cooperation has allowed us to work together with clinical partners to help make proton therapy available to anyone who needs it.

Our purpose is to offer more cancer patients effective treatments, decreased side effects, leading to a better quality of life.

The amount of clinical data on proton therapy is increasing rapidly, making it a challenge to keep up with new findings and advancements. We decided to take advantage of our day-to-day involvement with experienced clinical teams from proton therapy centers worldwide, in order to gather and share information on the use of proton therapy in oncology.

We’ve compiled this information and written a series of white papers reflecting on the latest scientific and clinical advances in proton therapy. The information that follows is the result of our in-depth review of the latest articles published in key scientific journals.

We have undertaken this information-gathering exercise with honesty and the highest level of integrity. While utmost care has been taken to ensure that the information contained in this publication is accurate, complete and unbiased, the reader should be aware that articles have been selected and data interpreted. We encourage you to interpret these data carefully and exercise your own critical and scientific judgment.

The IBA team believes in the benefits of proton therapy for patients and society. This information will help you and your teams learn more about the extraordinary promise of proton therapy, and we hope you will join us in making it accessible to more patients.

We wish you good reading,

Michel Closeret
Clinical Director
IBA

Olivier LeGrain
Chief Executive Officer
IBA

CONTACT US

AMERICAS
Toll-free: 1 877 IBA 4 PBT
T: +1 904 491 6080

EUROPE, MIDDLE EAST AND AFRICA
T: +32 10 203 342
F: +32 10 475 923

EMAIL
Clinical: clinical.program@iba-group.com
Product: pplus@iba-group.com
Info: info-pt@iba-group.com

WEBSITE
Visit us online at: https://iba-protontherapy.com

RUSSIA & CIS
Toll-free: +7 495 648 69 00
E-mail: info@iba-russia.ru

ASIA PACIFIC
T: +86 10 8080 9186

EMAIL
Clinical: clinical.program@iba-group.com
Product: pplus@iba-group.com
Info: info-pt@iba-group.com

WEBSITE
Visit us online at: https://iba-protontherapy.com
Head and neck cancers refer to a collective group of heterogeneous malignancies that develop in and around oral cavity, oropharynx, larynx, hypopharynx, paranasal sinuses, nasal cavity and salivary glands. Of all head and neck cancers, 90% are squamous cell carcinoma (HNSCC), with histologies including (but not limited to) melanoma, adenocarcinoma, adenoid cystic carcinoma and mucoepidermoid carcinoma comprising the remaining 10%. HNSCC is the sixth leading cancer by incidence worldwide and eighth by death. There are 0.5 million new cases a year worldwide. The American Cancer Society estimates that in the United States, approximately 3-5 percent of all cancers will be in the head and neck region. In 2016, an estimated 61,760 people (45,330 men and 16,430 women) will develop head and neck cancer, with an estimated 13,190 deaths (9,800 men and 3,390 women).1,2,3

Head and neck cancers are challenging to treat because of the close proximity of the tumors to multiple critical normal organs and structures in the region. Multidisciplinary treatment approaches including surgery, radiotherapy and/or chemotherapy are often required, particularly for advanced-stage disease. Radiotherapy can be employed as a primary, definitive treatment or as an adjuvant to surgery. Intensity-modulated radiation therapy (IMRT) has been an advance for photon-based radiotherapy delivery, reducing toxicity and improving quality of life in the treatment of head and neck cancer, as well as an improvement in cause-specific survival.4

However, even with IMRT, treatment-related toxicity (short and long-term) remains a significant issue. Patients commonly experience dysgeusia, dysphagia, odynophagia, mucositis, xerostomia, pain, nausea, vomiting, and weight loss, some to the point of requiring gastrostomy tube feeding.5 Proton therapy, owing to the unique physical properties, may lead to improvements in treatment-related toxicity and improvement in quality of life by significantly reducing doses delivered to normal organs or tissue. This paper aims to present the existing clinical outcome data on proton therapy for head and neck cancers.

PATIENT SELECTION

The rapid dose deposition and fall-off seen with proton therapy results in less radiation exposure of adjacent normal tissues, which may lead to therapeutic gains. Proton therapy, when compared to current standard approaches such as photon beam therapy, may lead to gains in areas such as overall survival, disease control, safety, health-related quality of life and other patient outcomes. An increasing emphasis on evidence-based medicine makes it worthwhile to assess the available data that supports proton therapy over other techniques to better guide the physician and patient toward the most appropriate treatment.6

The current model policy developed by the American Society for Radiation Oncology (ASTRO) recommends basing patient selection on the added clinical benefit proton therapy offers. This comes down to considering proton therapy in such cases where sparing the surrounding normal tissue is crucial and cannot be adequately achieved with a photon-based approach. The policy provides several non-specific examples:7

- The target volume is in close proximity to one or more critical structures and a steep dose gradient outside the target must be achieved to avoid exceeding the tolerance dose to the critical structure(s).
- A decrease in the amount of dose inhomogeneity in a large treatment volume is required to avoid an excessive dose “hotspot” within the treated volume to lessen the risk of excessive early or late normal tissue toxicity.
- A photon-based technique would increase the probability of clinically meaningful normal tissue toxicity by exceeding an integral dose-based metric associated with toxicity.
- The same or an immediately adjacent area has been previously irradiated, and the dose distribution within the patient must be sculpted to avoid exceeding the cumulative tolerance dose of nearby normal tissue.

A recently developed comparative effectiveness model helps clinical decision making in choosing proton or photon
modality for head and neck patients. Based on three levels of evaluation and comparison (i.e. dosimetric, toxicity, and cost-effectiveness level), the model successfully quantified patients for proton or photon treatment choice. A set of threshold values were predetermined by the researchers (e.g. organ at risk (OAR) mean dose, grade 2 toxicity of >10% and total toxicity reduction of 15% or greater) in order for the DVH analysis and NTCP toxicity prediction. In addition, €80,000 was chosen as the acceptable cost per additional QALY for the Markov cost-effectiveness model calculation. This decision making tool helps indicate both clinical outcome benefits and cost-effective benefits in choosing proton therapy.8

PROTON THERAPY FOR HEAD AND NECK TUMORS

A) OVERVIEW BENEFITS

Proton particles do not deposit exit dose, which allows proton therapy to spare normal tissues distal to the tumor target. This is particularly useful for treating head and neck tumors because of the anatomic constraints encountered in nearly all cancers in this region.

Proton therapy enables the delivery of aggressive local therapy. Proton therapy for paranasal sinus tumors reported improved local control and survival.9,10 A recent meta-analysis also reported that proton therapy was superior to IMRT in both disease-free survival (72% vs. 50% at 5 years) and tumor control (81% vs. 64%).11

The dosimetric advantage unique to proton therapy translates into toxicity reduction. Studies comparing proton versus photon therapy have reported significantly lower rates of acute > grade 2 dysphagia, dysgeusia, mucositis and nausea favoring proton therapy. Additionally, proton therapy resulted in prevention of weight loss, lower opioid use, and less gastrostomy tube dependence.12,13,14

For recurrent head and neck cancer requiring re-irradiation, proton therapy is able to maximize a focused dose of radiation to the tumor while minimizing dose to surrounding tissues which results in a minimal acute toxicity profile, even in patients who have received multiple prior courses of radiotherapy. Proton therapy is ideally suited for recurrent patients who are at risk of serious complications due to the high cumulative doses to critical structures.15

B) DOSIMETRIC COMPARISON

Numerous in silico planning comparative studies on various sites of head and neck cancer reported better dosimetry parameters with proton therapy as compared to photon-based techniques (table 1). Figures 1 and 2 illustrate the dose distribution comparison as well as the DVH comparison for a base of tongue tumor treated with IMPT and IMRT. Lomax et al.16 compared IMRT and IMPT treatment plans of paranasal...
sinus cancer, and reported that IMPT was the only method to spare critical structures at all dose levels simultaneously providing acceptable dose homogeneity within the target volume. Taheri-Kadkhoda et al.17 studied the pharyngeal cancer plans and reported that three-field IMPT has greater potential than nine-field IMRT with respect to tumor coverage and reduction of the integral dose to OARs and non-specific normal tissues. A comparative study on an extensive case in the oropharynx/hypopharynx region recorded significant low dose to OARs.18 A study on recurrent pharyngeal cancer supported that IMPT exposed the OARs to a significantly lower dose, effectively sparing the brainstem, spinal cord, optic nerve and chiasm, temporal lobes and parotid glands.19 An extensive review on in silico planning comparative studies for head and neck cancers by van de Water et al. concluded that protons substantially lower the dose to OARs. Of all potential techniques of proton delivery, pencil beam scanning intensity-modulated proton therapy, would offer the biggest advantages in an anatomically-complex site such as the head and neck, leading to a lower probability of radiation-induced side effects.20

C) CLINICAL OUTCOMES - LITERATURE REVIEW

The value of protons’ dosimetric advantages over photon-based techniques depicted in the in silico studies is being confirmed by the growing clinical outcome data.

PARanasal sinus and nasal cavity tumors

The Massachusetts General Hospital (MGH) group has substantial experience in proton therapy for nasal cavity and paranasal sinus malignancies. In 1997, a first report on successful treatment for esthesioneuroblastoma and neuroendocrine carcinoma with combined chemotherapy and proton radiation was published by Bhattacharyya et al.21 In 2002, Fitzek et al. published the results of a prospective study of patients with olfactory neuroblastoma or neuroendocrine carcinoma of the sinonasal tract treated by chemotherapy and proton-photon radiation, reporting a 5-year survival rate of 74% and a local control rate of 88%.22 In 2006, Pommier et al. reported a 5-year locoregional control rate of 93% for patients treated with adenoid cystic carcinoma (ACC),

<table>
<thead>
<tr>
<th>Study</th>
<th>Disease site</th>
<th>Target coverage</th>
<th>OAR parameter</th>
<th>IMRT</th>
<th>IMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lomax, 2003</td>
<td>paranasal sinus</td>
<td>similar PTV coverage</td>
<td>right eyeball volume≥20Gy</td>
<td>12-88%</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with increased dose constraints to OARs, PTV coverage with IMRT compromised</td>
<td>brainstem volume≥20Gy</td>
<td>13-85%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>noncritical normal tissues≥20Gy</td>
<td>27%</td>
<td>12%</td>
</tr>
<tr>
<td>Taheri-Kadkhoda, 2008</td>
<td>nasopharynx</td>
<td>IMPT significantly improved target coverage and conformation</td>
<td>Dmax optic chiasma</td>
<td>23.8Gy</td>
<td>16.1GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmax brainstem</td>
<td>58.7Gy</td>
<td>47.3GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean inner ear</td>
<td>36.4Gy</td>
<td>13.1GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean larynx/esophagus</td>
<td>30.6Gy</td>
<td>14.3GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean oral cavity</td>
<td>44.0Gy</td>
<td>38.1GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean pituitary gland</td>
<td>42.2Gy</td>
<td>34.8GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean parotid gland</td>
<td>40.0Gy</td>
<td>36.3GyE</td>
</tr>
<tr>
<td>Muzik, 2008</td>
<td>oropharynx/hypopharynx</td>
<td>similar PTV coverage</td>
<td>Dmean spinal cord</td>
<td>10.1-11.4Gy</td>
<td>1.2GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean larynx</td>
<td>37.7-38.4Gy</td>
<td>13.6GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean right parotid</td>
<td>10.3-10.9Gy</td>
<td>0.4GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmean non target tissues</td>
<td>5.3-6.0Gy</td>
<td>1.5GyE</td>
</tr>
<tr>
<td>Liu, 2010</td>
<td>recurrent nasopharynx</td>
<td>similar PTV coverage</td>
<td>Top of Form</td>
<td>42.5Gy</td>
<td>27.9GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmax brainstem</td>
<td>Bottom of Form</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D5 brainstem</td>
<td>19.5Gy</td>
<td>12.8GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dmax spinal cord</td>
<td>22.91Gy</td>
<td>8.38GyE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D5 spinal cord</td>
<td>13.62Gy</td>
<td>2.18GyE</td>
</tr>
</tbody>
</table>
via combined photon-proton dose escalation. The latest report from the MGH group on stage III and IV sinonasal squamous cell carcinoma reported 2-year and 5-year local control rates of 80% and overall survival rates of 67% and 47%, respectively.

A Japanese publication of 2004 by Tokuyoue et al. from the University of Tsukuba detailed experiences with thirty-three patients who were treated with either proton alone or in combination with photon, without undergoing prior surgical resection. Overall 5-year survival and local control rates were 44% and 74%, respectively, with > grade 3 treatment-related acute and late toxicity observed in 1 (3%) and 6 (18%) patients, respectively. The authors believed that proton therapy offers high local control rates with fewer toxicities relative to conventional radiation therapy. However, late toxicity was observed in areas of high radiation doses.

In 2008, Resto et al. reported in their retrospective study on 102 patients with locally advanced sinonasal cancers treated with proton therapy either with or without prior surgery. The study indicated that high-dose proton therapy procures excellent local control rates, with 5-year local control rates as high as 95% for the complete resection group and 82% for the partial resection group, with an overall survival percentage of 90% and 53%, respectively.

Another study by the Japanese group Zenda et al. of the National Cancer Center in Chiba was published in 2011, describing thirty-nine cases of patients with unresectable tumors of the nasal cavity, paranasal sinuses and skull base who were treated with proton therapy. A 49.1% 3-year progression-free rate was noted with an overall survival of 59.3%. The most common acute toxicities proved to be mild dermatitis (grade 2, 33.3%) and there were no severe acute toxicities (grade 3 or higher, 0%) observed. Five patients (12.8%) did suffer grade 3 to 5 late toxicities. The authors attest that the clinical profile of proton therapy makes it a promising treatment option for unresectable malignancies of the nasal cavity and in the paranasal area.

Toxicity reduction continues to be reported in series of salivary gland tumors, squamous cell carcinoma in the region of the nasopharynx, oropharynx and paranasal sinus. Patients treated with proton therapy experienced less dysphagia, mucositis, xerostomia and dysphagia. Patients were less dependent on opioid pain treatment and gastrostomy tube feeding.

Proton irradiation resulted in excellent local control for advanced primary sphenoid sinus malignancy. Truong et al. reported in 2009 that 2-year local, regional, and freedom from distant metastasis rates were 86%, 86%, and 50%, respectively. The disease-free and overall survival rates at 2 years were 31% and 53%, respectively. Even with high dose 70CGE, proton irradiation achieved local control with acceptable ophthalmological complications for advanced sinonasal cancers.
<table>
<thead>
<tr>
<th>Author</th>
<th>Pathology</th>
<th>Study</th>
<th>Outcome</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitzek et al., 2002</td>
<td>olfactory neuroblastoma neuroendocrine carcinoma</td>
<td>prospective study 19 patients chemotherapy and proton/photon radiation MGH</td>
<td>5-year survival rate, 74% 5-year local control rate, 88%</td>
<td></td>
</tr>
<tr>
<td>Tokuyue et al., 2004</td>
<td>Head and neck malignancy</td>
<td>retrospective analysis 33 patients proton or proton/photon without prior surgery MGH</td>
<td>5-year survival, 44% 5-year local control, 74%</td>
<td>3% acute toxicities 18% > grade 3 late toxicities in areas that received large radiation doses</td>
</tr>
<tr>
<td>Chan et al., 2004</td>
<td>NPC</td>
<td>retrospective analysis 17 patients combined proton/photon MGH</td>
<td>3-year local-regional control, 92% 3-year disease-free survival, 75% 3-year overall survival, 74%</td>
<td>photon radiation therapy, whether in combination with chemotherapy or not, results in excellent local-regional control in T4 NPC patients</td>
</tr>
<tr>
<td>Resto et al., 2008</td>
<td>locally advanced sinonasal cancer</td>
<td>retrospective analysis 102 patients proton therapy with or without surgery MGH</td>
<td>5-year local control: complete resection group, 95% partial resection group, 82% overall survival: complete resection group, 90% partial resection group, 53%</td>
<td></td>
</tr>
<tr>
<td>Zenda et al., 2011</td>
<td>unresectable tumors of: nasal cavity paranasal sinuses skull base</td>
<td>retrospective analysis 39 patients National Cancer Center Chiba</td>
<td>3-year progression-free, 49.1% 3-year overall survival, 59.3%</td>
<td>promising treatment for unresectable malignancies of the nasal cavity and in the paranasal area</td>
</tr>
<tr>
<td>Frank et al., 2013</td>
<td>oropharyngeal cancer</td>
<td>comparison study 26 IMPT patients, 26 IMRT controls MD Anderson</td>
<td>Need for feeding tube: 48% IMRT 20% IMPT</td>
<td>IMPT results in lower rate of grade 3 dysphagia</td>
</tr>
<tr>
<td>Truong et al., 2015</td>
<td>advanced primary sphenoid sinus malignancy</td>
<td>retrospective analysis 20 patients University of Texas</td>
<td>2-year local control, 86% 2-year regional control, 88% 2-year freedom from distant metastasis, 50% 2-year disease-free, 31% 2-year overall survival, 53%</td>
<td>brain invasion and involvement of the oropharynx and the anterior cranial fossa are important prognostic factors</td>
</tr>
<tr>
<td>Holliday et al., 2015</td>
<td>oropharyngeal cancer</td>
<td>comparison study 10 IMPT, 20 IMRT patients MD Anderson</td>
<td>GT insertion required: 20% IMPT 65% IMRT</td>
<td>decreased rates of GT placement likely partly due to better dose sparing of oral cavity</td>
</tr>
<tr>
<td>Grant et al., 2015</td>
<td>salivary gland tumors</td>
<td>retrospective analysis 24 patients protons MD Anderson</td>
<td>grade 2/3 dysphagia: photon group, 27% proton group, 0% grade 2/3 mucositis: photon group, 91% proton group, 46% photon group weight loss, 5.3% proton group weight gain, 1.2%</td>
<td>proton therapy associates with favorable acute toxicity profile</td>
</tr>
<tr>
<td>Russo et al., 2016</td>
<td>sinonasal squamous cell carcinoma</td>
<td>retrospective analysis 54 patients stage III IV median dose of 72.8 Gy(RBE) 96% prior surgical resection, 74% elective nodal radiation MGH</td>
<td>2-year and 5-year local control, 80% 2-year overall survival, 67% 5-year overall survival 47%</td>
<td>long-term results show that proton therapy is well tolerated and yields good locoregional control</td>
</tr>
<tr>
<td>McDonald et al., 2016</td>
<td>nasopharyngeal and paranasal sinus</td>
<td>comparison study 14 proton, 26 IMRT patients Winship Cancer Institute</td>
<td></td>
<td>PT with a lower opioid pain requirement at the completion of radiation and a lower rate of gastrostomy tube dependence by the completion of radiation therapy and at 3 months after radiation compared to IMRT</td>
</tr>
</tbody>
</table>
D) ONGOING CLINICAL TRIALS

There are three phase II and III studies registered with Clinicaltrials.gov.

MD Anderson Cancer Center leads a phase II/III randomized trial comparing IMPT and IMRT for oropharyngeal cancer. This study will enroll 360 patients. The primary measure sets the rates and severity of late grade 3-5 toxicity between the two modalities.

MGH leads a phase II study to investigate if proton therapy results in equivalent or improved local control rate with similar or lower toxicity compared to IMRT in treating locally advanced sinonasal malignancy. With 90 patients to enroll, the trial will measure primarily local control at 2 years, and the secondary endpoints including vision preservation, Quality of Life (QoL) and neurocognitive function at 5 years.

The Technische Universität Dresden is conducting a study looking into proton re-irradiation for patients with head and neck cancer in a previously (> 50 Gy) irradiated field. The trial will measure late toxicity as the primary endpoint, as well as survival and QoL as the secondary endpoints.

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>randomized</th>
<th>comparative</th>
<th>PI</th>
<th>endpoint</th>
<th>No. subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-irradiation of Recurrent Head and Neck Cancer</td>
<td>phase II</td>
<td></td>
<td></td>
<td>Technische Universität Dresden</td>
<td>toxicity, tumor control</td>
<td>50</td>
</tr>
<tr>
<td>Randomized Trial of Intensity-Modulated Proton Beam Therapy (IMPT) Versus Intensity-Modulated Photon Therapy (IMRT) for the Treatment of Oropharyngeal Cancer of the Head and Neck</td>
<td>phase III</td>
<td>yes</td>
<td>yes</td>
<td>MD Anderson</td>
<td>toxicity</td>
<td>360</td>
</tr>
<tr>
<td>Intensity-Modulated or Proton Radiation Therapy for Sinonasal Malignancy</td>
<td>phase II</td>
<td></td>
<td></td>
<td>MGH</td>
<td>local control, regional control, survival, QoL, neurocognitive functions</td>
<td>90</td>
</tr>
</tbody>
</table>

E) THE EXPERT’S PERSPECTIVE

Dr. Alexander Lin,
Director of Clinical Proton Operations, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania

At the Perelman School of Medicine of the University of Pennsylvania, Dr. Alexander Lin is the Chief of the Head and Neck Cancer Radiotherapy Section and the Medical Director of the Roberts Proton Therapy Center. He is an NIH-funded clinical investigator, with a focus on the multidisciplinary management of head and neck cancers, the integration of novel radiotherapy techniques (such as proton therapy) in the cancer treatment paradigm, and the use of novel radio-sensitizers to improve disease outcomes. Dr. Lin’s proton research program has focused on the integration of proton therapy in the context of a multidisciplinary treatment approach, with the goal of improving patient outcomes beyond what is currently observed with standard radiotherapy approaches.

- THE PRESENT

Radiotherapy is a well-established, curative treatment modality for patients with head and neck cancer. For patients with early stage disease, it is often the only treatment needed, while for those with more advanced cancers, radiotherapy is used in conjunction with chemotherapy, or after surgical resection.
Dr. Lin addresses challenges specific to standard head and neck radiation, and cites specific scenarios in which proton therapy may be beneficial. “The head and neck region contains many vital organs that perform critical everyday functions. Often, these organs are located very close to areas that require treatment with radiotherapy. For many patients who are cured, they live long-term with the after effects of treatment, often with a negative impact on functions such as speech, swallowing, and general quality of life. For other patients, there are limitations on how much radiation can be safely delivered, limiting the odds of obtaining a cure. It is here that proton therapy has tremendous potential. By reducing normal tissue exposure to radiation, proton therapy can minimize long-term toxicity, ensuring excellent post-treatment quality of life. For cancers that are untreatable with standard techniques, proton therapy can potentially deliver the higher doses of radiation needed to obtain cure while maintaining patient safety.”

Clinical results supporting these potential benefits are now beginning to emerge, says Dr. Lin. “We are starting to observe and report that patients who are treated with proton therapy for cancers of the oropharynx are maintaining/recovering taste, appetite and saliva production at rates far greater than those treated with standard radiation techniques. We expect that these early benefits will translate into long-term gains for patients with respect to function and quality of life. We believe that these results should be confirmed through larger, prospective studies, and we are committed to ensuring that the gains seen with proton therapy are clear and generalizable to the medical community. Our ultimate goal is a shared mission amongst patients and providers alike; to help better the lives of our patients”.

THE FUTURE
Dr. Lin believes that the technology for proton beam radiation will continue to advance and enhance its capabilities. “There are numerous developments currently in process to improve our ability to deliver proton radiation more accurately and efficiently. Pencil beam proton therapy is the newest development in proton radiation, giving us the greatest capabilities to deliver and limit high doses of radiation to areas of cancer involvement, while minimizing doses to normal organs. It is currently the standard approach for the majority of our patients receiving proton therapy at Penn Medicine. Other advances in imaging and quality assurance will allow us to further advance the field of cancer care and improve patient outcomes.”

The role of proton therapy will furthermore continue to grow along with advances in other fields of oncology, concludes Dr. Lin. “Proton therapy is a highly potent and effective treatment for patients who require radiotherapy. However, we realize that cancer care is complex, and often requires a multidisciplinary approach, with the best results coming from combining other treatments such as surgery and/or chemotherapy with radiotherapy. No single treatment is likely to be a universal cure for patients with aggressive and advanced forms of cancer. For the patients whom we routinely treat with radiation, we believe that proton therapy will help them achieve better results, not only during the course of their treatment, but also for the years after they have put their cancer diagnosis behind them. For other patients who currently do not routinely receive radiotherapy as part of their treatment regimen, we are just starting to scratch the surface of the potential of radiation, and proton therapy to be able to unleash the power of a patient’s own immune system to fight their cancer when used in combination with novel drugs targeting the immune system. I believe that it is important that all cancer physicians (whether they are surgeons, medical oncologists, or radiation oncologists) and their patients should have the ability to receive a careful evaluation by a specialist in proton radiotherapy, and for those in which there is a compelling necessity, to have access to proton treatment to obtain the best possible results.”

DISCLAIMER

All care has been taken to ensure that the information contained herein is correct, however, no responsibility or liability whatsoever can be assumed by IBA in regard of this information.

Opinions expressed are exclusively those of the experts and scientists cited; these do not necessarily represent the opinion of IBA.

The information is provided as an information resource for professionals only and is not a substitute for professional medical advice and care; it shall and may not to be used or relied on for any diagnostic or treatment purposes. We strongly recommend to always seek the professional advice of qualified health care providers for any questions you might have in regard of the subject matter hereof.
IBA: The best in proton therapy today and tomorrow

Together with our clinical partners, we brought proton therapy to clinical cancer care.

Ever since we started more than 30 years ago, our collaborations, our visionary roadmap and progressively unrivalled experience have enabled us to continue to innovate. Care givers now benefit from leading proton therapy technologies.

Today, our true continuum of Image-Guided Intensity Modulated Proton Therapy solutions can easily be integrated in most healthcare settings to make it available to all patients who need it.

Backed by IBA's unique service offer (financing, workflow optimization, education), from the single-room Proteus®ONE to the tailor-made Proteus®PLUS, all our solutions and robust processes (installation, operations and upgrades) are developed in collaboration with our end-users.

Tomorrow, our unique and open culture of sharing will further strengthen the clinical and patient communities we have always cared for. Working collectively, we will achieve our goal which is to offer cancer patients access to effective treatments with decreased side effects and better quality of life.

CONTACT
Info-pt@iba-group.com

* Proteus®ONE and Proteus®PLUS are the brand names of the Proteus®235.